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Abstract

One of the main challenges in editing a mesh is to retain
the visual appearance of the surface after applying vari-
ous modifications. In this paper we advocate the use of lin-
ear differential coordinates as means to preserve the high-
frequency detail of the surface. The differential coordinates
represent the details and are defined by a linear transfor-
mation of the mesh vertices. This allows the reconstruction
of the edited surface by solving a linear system that satisfies
the reconstruction of the local details in least squares sense.
Since the differential coordinates are defined in a global co-
ordinate system they are not rotation-invariant. To compen-
sate for that, we rotate them to agree with the rotation of
an approximated local frame. We show that the linear least
squares system can be solved fast enough to guarantee in-
teractive response time thanks to a precomputed factoriza-
tion of the coefficient matrix. We demonstrate that our ap-
proach enables to edit complex detailed meshes while keep-
ing the shape of the details in their natural orientation.

1 Introduction

Editing tools for three dimensional shapes have been an
important research area in geometric modeling and com-
puter graphics. It is a challenging problem since a good
editing tool should be intuitive and easy to use, and at the
same time flexible and powerful. In the following we are
focusing on mesh editing, where the tool works on shapes
represented by triangular meshes. There is a vast amount of
tools for free-form modeling of shapes from scratch mostly
based on piecewise polynomial surface representations (see
e.g., [8, 12]). For triangle meshes, the most popular ex-
ample of such tools are subdivision techniques [20]. How-
ever, these techniques aim at the design of smooth surfaces,
and they are not appropriate for editing arbitrary, existing
meshes such as the complex, highly detailed shapes that
emerge from digitizing real-world models.

A basic editing operation is to move a single vertex of the
mesh. This relocation of thehandlevertex is propagated to

the shape such that the modification is intuitive and resem-
bles the outcome of manipulating an object made of some
physical soft material. This operation is extremely simple
yet powerful. The analysis of this fundamental editing oper-
ation leads to the understanding of other higher-level mesh
editing operations. For the ease of explanation we will only
discuss the relocation of a single vertex. The use of more
complex handles composed of multiple, possibly weighted
handles, is implied, enabling mimicking other modeling
metaphors (see e.g., [2] and the references therein).

There are a number of crucial requirements on an edit-
ing operation which make shape modeling a challenging
problem: The operation should be efficient enough forin-
teractivework. It should providelocal influence andde-
tail preservation. Typically, moving a handle is a local op-
eration, where only nearby vertices are affected. In addi-
tion, a flexible tool allows the user to easily define the de-
gree of locality and hence enables edits of different scale
as shown in Figure 1. When dragging the handle vertex,
the deformed surface should retain the look of the original
surface in a natural way. If a surface is smooth, the mod-
ified shape should remain smooth. If the surface contains
some geometric details, theshapeandorientationof these
details should be preserved. The editing operation should
naturally change the shape and simultaneously respect the
structural detail. This problem becomes more pronounced
with the emergence and the proliferation of three dimen-
sional scanned models. Unlike CAD models, the surfaces of
scanned models are usually not smoothed and contain high-
frequency details which one would like to preserve since
they contribute a lot to the appearance of the surface.

In this paper we advocate the use of differential coor-
dinates as an alternative representation for the vertex co-
ordinates. We show that this representation leads to effi-
cient, interactive and intuitive shape modeling including lo-
cal control and detail preservation. The differential coordi-
nates represent the geometric details and are defined with
respect to a common global coordinate system. This rep-
resentation allows a direct detail-preserving reconstruction
of the modified mesh by solving a linear least squares sys-
tem. The differential coordinates are not rotation-invariant



(a) (b) (c) (d)

Figure 1. Editing the Mannequin model with different “locality” effects. (a) and (c) show the original model with the same

handle vertex (at the tip of the nose) but different regions of interest (ROI). The dots mark the locations of anchor points that

surround the ROI. (b) and (d) show the result of dragging the handle vertex the same distance with the two different radii of

ROI. Since the radius of interest in (c) is larger, the effect of the editing operation is more global.

since they are defined in a global coordinate frame. As we
show below, this can cause distortion of the orientation of
the details on the reconstructed surface. Our approach to
compensate for that is to rotate the differential coordinates
according to the rotation of an approximated local frame.
This rectifies the natural orientation of the details, as one
would expect them to appear.

The method we present in this paper allows editing arbi-
trary triangle meshes. Our approach enables flexible, intu-
itive and interactive shape modeling. The method is concep-
tually simple and fairly straightforward to implement com-
pared to common techniques. The method avoids explicit
multiresolution representations of the shape to allow edit-
ing in different scale as shown in Figure 1.

For the sake of speed, in this work we have restricted our-
selves to express the differential coordinates in linear terms
only. The reconstruction process requires solving a sparse
linear least-squares system over the modified region of the
surface. We show that this process is fast enough to guaran-
tee interactivity even for detailed mesh regions.

2 Background

Mesh Editing. In this section we briefly overview mesh
editing techniques for geometric modeling as they have
evolved in the recent years. Early approaches focused on
the design of smooth surfaces. Welch and Witkin [24] in-
troduced a variational method for free-from shape design
based on arbitrary triangle meshes. An edit operation im-
poses some geometric boundary conditions, and the modi-
fied surface is obtained by an optimization process that min-
imizes a fairness functional. Taubin [22] improves the effi-
ciency of the optimization by applying Laplacian smoothing

which requires only the solution of a sparse linear system.
The Laplacian-based fairing operator is carefully developed
from a signal processing point of view, revealing the re-
lation to geometric frequencies. Techniques for modeling
smooth surfaces are still an active research area [17].

The above work considers the design of smooth sur-
faces. Shapes that contain geometric details, like those
acquired from real-world objects, require special editing
tools to preserve the details. The standard approach to
detail-preserving uses a multiresolution representation of
the mesh. It enables large-scale editing on a coarse level
and naturally propagates modifications to the finer levels.
The geometric details are usually expressed as some kind of
displacements relative to a local coordinate frame [10]. The
different levels can be considered as geometric frequencies
or resolution of detail, where the coarsest level refers to a
smooth surface. Roughly speaking, the editing modifies a
coarse level, and the modified version of the next finer level
is computed by ”adding” the displacements. This is iter-
ated over the hierarchy until the finest level of the detailed
surface is reconstructed.

Zorin et al. [25] present a framework for interactive mul-
tiresolution modeling. Their technique is based on input
meshes with subdivision connectivity. Kobbelt et al. [15]
enable the interactive editing of arbitrary meshes, using a
two-band decomposition to encode details between original
and a smoothed mesh. The further improvement of the re-
construction leads to multi-band decompositions [11, 16].

The encoding scheme of the local detail is critical. Zorin
et al. [25] and Guskov et al. [11] use local frames attached
to vertices and normal displacements that pierce the origi-
nal surface and thus lead to resampling. Kobbelt et al. [15]
use face-based frames, and the local encoding optimizes the
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base point of the displacement vector. The encoding was
further improved in [16] to avoid artifacts in the reconstruc-
tion. In a recent work [4], displacement volumes are ap-
plied to prevent local self-intersection in the reconstructed
surface. This method requires an iterative, non-linear opti-
mization process. Other works aim at adjusting the vertex
density [14] and remeshing the modified surface on the fly,
trading computation time for a regular vertex distribution.

A different approach, introduced by Lee et al. [18] pa-
rameterizes the region of interest over a planar domain and
fits a multiresolution B-spline to the relocated handles. The
modified surface is reconstructed from displacements to the
spline. This can be interpreted as a kind of simple constraint
deformation (scodef[3]), well-known for FFD. In this con-
text, Bendels and Klein [2] recently introduced an inherent
parameterization by geodesic distances to improve on the
constraint fitting and interpolation.

Differential Coordinates. The simplest form of differ-
ential coordinates is the Laplacian coordinates. The pow-
erful properties of Laplacian coordinates for mesh repre-
sentation are not new and have been exploited in various
ways. Taubin [22] derives a discrete mesh fairing operator
that is applied to model smooth surfaces. Karni and Gots-
man [13] take advantage of this extension of spectral theory
to arbitrary 3D mesh structures for progressive and com-
pressed geometry coding. Based on Laplacian coordinates,
Sorkine et al. [21] derive a geometry compression algorithm
that benefits from strong quantization.

Alexa [1] shows that Laplacian coordinates can be effec-
tive for morphing and briefly discusses their potential for
free-form modeling. He proposes to use differential coor-
dinates to perform local morphing and deformation of the
mesh, suggesting differential coordinates as alocal mesh
description, which would be more suitable to constrain un-
der a global deformation of the mesh. This work also
mentions the difficulty in using affine-invariant coordinates
for mesh representation: the vertex neighborhood cannot
always define a local frame (due to linear dependency),
and thus the problem is numerically unstable. In our pa-
per, we bypass the developement of affine-invariant coor-
dinates in mesh editing by proposing a procedure to ex-
plicitly manipulate the differential coordinates (which are
only translation-invariant). Although our approach does not
provide a completely affine-invariant representation of the
mesh, it preserves the orientation of the mesh details under
the deformations, and it is fast and robust.

3 Fundamentals

Let G = (V,E) be a 3D triangular mesh, whereV de-
notes the set of vertices of the mesh andE denotes the set
of edges. Denote byp j the spatial position of vertexj. Let

Sbe a scheme approximating verticesp j ∈V by linear com-
bination of some other vertices:

p j ≈ S(p j) = ∑
i∈supp( j),i 6= j

α ji pi (1)

where supp( j) denotes the set of vertex indices that scheme
Suses to approximate vertexj.

Now, the linear transformationD(p j) = p j −S(p j) is de-
fined as linear differential mesh operator created by scheme
S, andD(V) = V −S(V) is defined as differential represen-
tation of the mesh created by schemeS. In the next sections
we will use such representations for our 3D mesh as a point
of departure to our mesh editing algorithm.

A basic example of a linear differential mesh operator
created by schemeS is the mesh Laplacian operator:

D(p j) = L(p j) = p j −
1
d j

∑
i:( j,i)∈E

pi , (2)

whered j is the valency of vertexj andS(p j) = 1
d j

∑( j,i)∈E pi

is the approximation schemeS.
In general, the operatorD can be viewed as a filter of

high-frequency detail, i.e. the detail that is missed out by
the approximation schemeS. In the case of the Laplacian
scheme,D measures the deviation of a vertex from the cen-
troid of its neighbors and thus captures local detail prop-
erties of the surface. These are the kind of details that we
would like to preserve during an editing operation.

The operatorD is linear and can be represented by an
(n×n) matrixM, wheren = |V|:

Mi j =


1 i = j
−αi j j ∈ supp(i)
0 otherwise

Thus,(δ (x),δ (y),δ (z)) = M(p(x),p(y),p(z)), whereδ (x) is the
n-vector ofx components ofD(p). We call the vectorD(p j)
thedifferential coordinatesof vertex j. If |supp( j)| is small
thenM is a sparse matrix, and the differential coordinates
can be efficiently computed.

Given the differential coordinatesδ (x),δ (y),δ (z) of the
mesh, the absolute coordinates of the mesh geometry can
be reconstructed by solving the systemMx = δ (x) (the same
goes fory andz). The matrixM can be singular. For exam-
ple, in the case of the simple Laplacian (2), rank(M) = n−k
where k is the number of connected components in the
mesh [9]. We add spatial constraints to the system to ob-
tain a unique least-squares reconstruction and to control the
shape of the surface. To put a (soft) constraint on the po-
sition of vertexi, we add the equationwixi = wici to the
system (ci is the desired location andwi > 0 is the weight
that we assign to the constraint). We then solve the resulting
systemAx = b in the least-squares sense.
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4 Preserving the orientation of the details

Ideally, relative coordinates should be rotation-invariant,
represented in a local coordinate system with respect to
some local reference frame. However, the differential co-
ordinates, as defined above, are represented in the global
coordinate system, since they are merely an image of a lin-
ear transformation ofR3n. Therefore they are not rotation-
invariant. The transformation of the differential coordinates
to local frames (defined at each vertex differently, based on
some neighborhood) is not a linear invertible mapping of
R3n. While staying in a linear framework has efficiency and
simplicity advantages, it brings up the following problem:
As a result of an editing operation, certain deformation of
the surface is introduced, which typically involves some lo-
cal rotations. However, the reconstruction of the surface
from the differential coordinates does not respect the local
rotations and therefore the orientation of the reconstructed
details will not be preserved and not rotated with the de-
formed surface. This is demonstrated in Figures 2 and 6.

Recall that the editing of the surface is meant to modify
large features of the surface, while keeping the small details
locally unchanged. More precisely, we would like to pre-
serve the orientation of the details with respect to the sur-
roundings. To compensate for rotations, weexplicitly rotate
the vectors representing the differential coordinates, while
continuing to represent them in the global coordinate sys-
tem. The rotation is taken to be the local estimation of the
transformation applied to the low frequency surface.

More formally, let us consider two meshesM and M′,
whereM′ is the mesh obtained fromM by an arbitrary edit-
ing transformationT. M andM′ share the same connectiv-
ity and have different geometry. Denote byp j andp′j the
spatial locations of vertexj in M andM′, respectively. Let
us also definen j andn′j as the estimates of the normals at
vertex j in M andM′, computed as an average of the face
normals in some neighborhood of the vertex.

The following is an important property of the differential
coordinates:

R·D(p j) = D(R·p j), (3)

whereD is the transformation from absolute to differen-
tial coordinates andRaglobal rotation applied to the entire
mesh.

The editing transformationT introduces different lo-
cal rotations across the surface (in addition to stretch, of
course). Thus, our key idea is to use the above property
of the differential coordinates locally, assuming that locally
the rotations are similar.

The local rotation at vertexj is approximated by ob-
serving the rotation of an orthogonal frame consisting of
{n j , u ji , n j ×u ji}, whereu ji is a unit vector obtained by
projecting some edge( j, i) onto the plane orthogonal ton j .
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Figure 2. The differential coordinates are not rotation-

invariant. Therefore, when we edit the mesh (blue curve),

the orientation of the details with respect to the low-

frequency surface is not preserved. To rectify this, we

explicitly rotate the differential coordinates (see the red

curve).

In other words,

u ji =
v
‖v‖

, wherev = (pi −p j)−〈pi −p j ,n j〉n j .

The rotation of the normal component is defined by
n j ↔ n′j . The rotation of the tangential component is esti-
mated by observing the transformation of the chosen edge
( j, i). Among all edges emerging fromj, it is best to choose
the one whose direction is the closest to being orthogonal to
n j . We can writeD(p j) in this frame:

D(p j) = αn j +βui j + γ(n j ×u ji ).

After applying transformationT, the above frame trans-
forms to {n′j ,u

′
ji ,n

′
j × u′ji}, whereu′ji is the direction of

edge( j, i) in the transformed meshM′, projected onto the
plane orthogonal ton′j . The rotated differential coordinates
of vertex j are:

D′(p′j) = αn′j +βu′ji + γ(n′j ×u′ji ).

We defineR1 andR2 to besimilar rotationsif

‖R1−R2‖ ≈ 0 (4)

using some norm induced by a vector norm onR3. Since
property (3) is correct globally, we expect it to be correct
for locally similar rotations. Denote byRj the rotation as-
sociated with the vertexj. The normal directions of nearby
points over a low-frequency surface do not deviate rapidly
(in Section 6 we describe how to achieve ”smooth” normal
estimation). Local tangential rotation is also a slow chang-
ing parameter for reasonable transformationsT. SinceRj is
defined using the estimation of normal and tangential rota-
tions of the low-frequency surface, we expect‖Ri −Rj‖ to
be small for verticesi in the neighborhood ofj. Thus, we
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can expect the property (3) to be valid locally, or in other
words, that the reconstructed transformed surface retains
the orientation of the details with respect to the underlying
low-frequency surface.

In summary, the reconstruction from the rotated differ-
ential coordinates consists of the following four steps:

1. Apply a rough deformationT to the mesh.
2. Approximate local rotationsRj .
3. Rotate each differential coordinateD(p j) by Rj .
4. Solve the system ofRj(D(p j)) to reconstruct the

edited surface.

5 Editing using differential coordinates

From the user’s point of view, the editing process is com-
prised of the following stages: First, the user defines the
region of interest (ROI) for editing. Next, the handle ver-
tex is selected. In addition, the user can optionally define
the amount of “padding” of the ROI bystationary anchors.
These stationary anchor vertices support the transition be-
tween the ROI and the untouched part of the mesh. The
user can also define the type of the differential operator he
wishes to use. Finally, the user moves the handle vertex,
and the surface is reconstructed with respect to the relo-
cation of the handle and displayed. The last two steps of
selecting and then relocating a handle are repeated for the
current ROI until the desired surface edit is achieved.

On the algorithmic side, the following steps are per-
formed. Once the ROI, the stationary anchors within and
the handle vertex are defined, the mesh vertices are logically
partitioned into two groups: the modified vertices, consist-
ing of the ROI, and the rest of the mesh, which is untouched
and thus stays fixed. Only the submesh of the modified ver-
tices is considered in the following editing process. The
positions of the handle vertex and the anchors constrain the
reconstruction and hence the shape of the resulting surface.
The handle acts as a control point, therefore this constraint
is constantly updated. The unconstrained vertices of the
edited mesh represent the overall shape and are forced to
follow the user interaction. The stationary anchors are re-
sponsible for the transition from the ROI to the fixed part of
the mesh. The least-squares solution approximates their po-
sitions (see also [21]) resulting in a soft blend between the
two submeshes. To further improve on the smoothness, we
choose several layers of anchors, which are weighted pro-
portional to their geodesic distance from the handle. Select-
ing the amount of these padding anchor vertices depends on
the user’s requirements, as mentioned above. We have ob-
served in all our experiments that setting the radius of the
“padding ring” to be about 10% of the ROI radius gives sat-
isfying results. Figure 3 illustrates the vertex classification.

The edited surface is reconstructed from the locally ro-
tated differential coordinates, as described in Section 4. To

Figure 3. Classification of the vertices of the edited re-

gion (ROI). The yellow vertex is the handle vertex which

is moved by the user. The green vertices are the free
vertices of the ROI (their position changes according to

the reconstruction process). The red vertices are the

stationary anchors - their position is constrained in the

least-squares sense.
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Figure 4. The effect of editing the mesh (in blue) using dif-

ferent orders of the Laplacian operator. The constrained

anchors are the left- and rightmost vertices of the mesh.

Pulling the handle vertex in the middle results in the

green curve for the 1st-order Laplacian and red curve

for the 2nd-order Laplacian operator.

approximate the rotations we have to a priori estimate the
normals of the editing result. The details of this normal
estimation are given in the next section. It is based on a
reference shape that is a rough, approximate result of edit-
ing the input mesh. Here, we simply use the reconstruction
with respect to the not yet rotated differential coordinates
as reference. Then our normal estimation approximates the
normals of some underlying smooth surface. This approach
proved to be effective for estimation of local rotations; how-
ever, other types of deformations can be applied to obtain
a reference surface, such as a simple constrained deforma-
tion [2, 3].

In the last step, after applying the local rotations to the
differential coordinates of the vertices in the ROI, we recon-
struct the surface by solving the linear least-squares sys-
tem defined in Section 3. The system is constructed from
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Figure 5. A 2D example of smooth surface normals estimation. (a) and (c) show the surface with high-frequency detail and

the estimated normals of the underlying smooth surface. In (a) a naive averaging of the detailed surface normals was used.

(b) shows the same normal vectors as in (a), but the y coordinate of the origin point of each normal is set to zero. This

visualizes the problem of the naive estimation - the resulting normals do not vary smoothly. In (c) we show the result of

normals estimation using weighted average (with the same support as in (a)–(b)), as explained in Section 6. As demonstrated

in (d), such estimation leads to more smoothly-varying normals which are closer to the real smooth surface normals.

the basic differential operator matrix and the extension of
the constrained vertex positions equations. The right-hand
side vector contains the rotated differential coordinates to-
gether with the constrained locations of the handle and the
stationary anchors. The solving procedure is efficiently im-
plemented, as explained in Section 7. We are free to choose
an appropriate (linear) differential operatorD, such as dif-
ferent orders of the Laplacian. However, a higher-order op-
erator has larger support, resulting in a less sparse system
matrix. Figure 4 shows a 2D example of editing a mesh by
employing the same constraints and handle movement, by
using first- and second-order Laplacian (without applying
explicit rotations to the differential coordinates). The latter
operator exhibits smoother transition between the stationary
vertices and the ROI.

6 Normals estimation

The detail preservation technique introduced in Section 4
requires an approximation of the normals of the underlying
smooth surface. A naive estimation can be applied by aver-
aging the normals of the detailed surface in some neighbor-
hoodWj of radiusr around the estimated vertexj:

n j =
n
‖n‖

; n = ∑
i∈Wj

ni .

However, this simple method does not always give sat-
isfactory results since it weighs all the normals equally
(see Figure 5(a)–(b) for an example). A better alter-
native is to use a smooth weighting scheme, where the
weights decrease with the distance from the estimated
vertex: n = ∑i∈Wj

wi j ni ; wi j = p(dist(p j ,pi)). The radial

function p should be a smooth function vanishing close to
r (the estimation support radius). We have chosen to use

the polynomialp(t) = 2
r3 t3 − 3

r2 t2 + 1. It has the desired
properties: p(0) = 1, p′(0) = p′(r) = p(r) = 0, and it is
smooth. The distance measure used should ideally be the
geodesic distance betweenp j andpi ; however, it is diffi-
cult and computationally costly to compute. Therefore, we
retreat to an approximation by computing the length of the
weighted shortest path betweenp j andpi using Dijkstra’s
algorithm, where the edges of the mesh graph are assigned
weights equal to the edges’ length. A more detailed discus-
sion of this choice is given in the next section.

The weighting scheme leads to a smoother approxima-
tion of the normals, as can be observed in the 2D example
in Figure 5. The figure compares the naive averaging with
the elaborated weighted averaging. Note that the supporting
neighborhood is the same in both cases.

7 Implementation issues

An interactive editing tool must provide the user an im-
mediate feedback. The critical part of our algorithm is
the reconstruction from the differential coordinates, conse-
quently we express them in linear terms only. Thus, the
computational kernel of our editing algorithm is a sparse
linear solver for the least-squares problem min‖Ax − b‖
over the modified region of the surface. This problem can
be solved fast enough to guarantee interactive editing. The
speed is gained thanks to a pre-factorization of the coeffi-
cient matrix, which permits very fast solves. Hence it is
possible to work on large, detailed meshes while maintain-
ing interactive frame-rates.

To solve the linear least-squares system, we use a direct
solver for the normal equationsATAx = ATb. The coeffi-
cient matrixATA is positive semi-definite, and its triangular
factorization is computed asATA = RTR, whereR is an up-
per triangular matrix. The factorization is the most time-
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consuming operation, but it only needs to be done once
per defined edited region. Once the factorization is avail-
able, the system can be solved very efficiently by back-
substitution, as many times as necessary. This is required
each time the position of the handle vertices is changed,
which implies a change of the right-hand side vectorb.

In our implementation we useTAUCS version 2.2 [23]
as linear solver. It is a direct solver which performs quite
fast even on large editing regions, as shown in Table 1. The
table displays factorization and solving times for the ROIs
that we used in our experiments. The fast solve procedures
enable interactive frame-rates when editing complex, de-
tailed meshes. The timings were measured on a 2.4 GHz
Pentium 4 computer.

Another implementation issue to address is the compu-
tation of geodesic distances needed for our smooth normals
estimation and the weighting policy for the stationary an-
chor points. As explained in Section 5, the anchors’ weights
are proportional to their respective geodesic distance from
the handle. In contrast to [2], these distances are applied
merely to aid a smooth transition between the edited re-
gion and the fixed part of the mesh. Therefore, we observed
that an inexpensive approximation to the geodesic distance
is sufficient for our application. We use Dijkstra’s algo-
rithm to compute discrete shortest paths, where each edge
is weighted by its length.

8 Results and discussion

We demonstrate that representing the geometric informa-
tion of a triangle mesh in differential form enables detail-
preserving interactive shape modeling. The absolute vertex
positions are reconstructed from their relative coordinates
by solving a sparse linear system. This can be done effi-
ciently, as discussed in the previous section. In fact, we
get interactive response for the reconstruction in our ex-
periments. Table 1 provides the computation times for fac-
torization and back-substitution for the shown examples as
well as the size of the editing region. Note that the factor-
ization is applied only once per ROI.

Figures 1 and 7 show examples for edits on theMan-
nequinand theOctopusmodels. As the user defines regions
of interest of different size, the surface is edited on different
scales of detail. The modification of theOctopus’ facial ex-
pression in Figure 8 adds and changes some high-frequency
detail. In the examples, we padded the outer layers of the
ROI with weighted stationary anchors for about 10% of its
radius, as explained in Section 5.

The figures show the preservation of details and surface
features like the nose and lips of theMannequinor the circu-
lar stamps of theOctopus. The local rotations are applied to
the differential coordinates to preserve the orientation of the
details. Figure 6 illustrates the effect of this operation for a

Model ROI Factor Solve

Mannequin(Figure 1(a)) 1,201 0.031 0.002
Mannequin(Figure 1(c)) 3,395 0.051 0.003
Octopus(Figure 7, top) 4,685 0.092 0.005
Octopus(Figure 7, bottom) 12,774 0.568 0.020
Octopus(Figure 6, bottom) 16,792 0.804 0.030
Height field(Figure 6, top) 32,280 1.863 0.069

Table 1. Running times of solving the linear least-squares

systems for the different editing regions. ROI denotes

the number of vertices in the editing region. Factor is

the time in seconds spent on the factorization of the nor-

mal equations. The factorization is performed only once,

when the editing region is selected. Solveis the time to

solve for one mesh function.

simple height field and for theOctopusmodel. We compare
to the reconstruction from coordinates defined with respect
to the global coordinate system, which clearly suffers from
unnatural distortion of the local detail (note the rings on the
arm of theOctopus).

The above examples indicate that our method enables in-
tuitive and flexible shape modeling at interactive frame rates
for fairly complex models. For all edits we chose the dif-
ferential mesh operatorD as uniform discretization of the
Laplacian also known as the umbrella operator [15]. For
our purposes this simplest discretization has been proven to
be good enough, but better approximations can be used as
well (as in e.g., [7, 11]). The order of the Laplacian affects
the local support of the operator and hence the sparseness
of the system. We plan to investigate the tradeoff between
additional computational costs and the benefit for editing.

Our approach is conceptually simple, and its implemen-
tation is relatively straightforward. The software consists of
two main components: the triangle mesh and a sparse linear
solver together with a matrix package. Both components are
available in standard libraries (e.g. [5, 23]) and can be eas-
ily combined. Note that our technique does not require any
involved method for multiresolution analysis and synthesis
to provide interactive edits of different scale.

Based on the elementary operation of moving a sin-
gle vertex, more advanced editing operations can be easily
built. Constraining curves and handle regions can be done
by appropriately grouping handle vertices, like for model-
ing the eyebrow in Figure 8. In general, we can interpret
the displacement of an arbitrary subset of handle vertices as
definition of a more general free form deformation (see [2]
for a recent discussion on the topic). All these extensions
are independent of, and do not interfere with, the core al-
gorithm and thus can be easily integrated into our shape
modeling framework.
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9 Conclusion

In this paper we show how a differential representation
of vertex coordinates can be exploited for the editing of ar-
bitrary triangle meshes. The use of this representation leads
to a conceptually simple yet powerful method for interac-
tive, feature-preserving shape modeling method. Thanks to
local rotations of the relative coordinates the orientation of
the details are preserved. Our examples show the effective-
ness and efficiency of the method for fairly complex input
meshes. In particular, we show that a simple and intuitive
modeling tool provides results quickly, while preserving the
local surface details.

As we discussed the value of relative coordinates and
in particular Laplacian coordinates, have been recently pro-
nounced in other applications like mesh morphing and ge-
ometry compression. We believe that differential coordi-
nates have a lot more potential in digital geometry process-
ing. For instance, this includes the extension of more digital
image processing techniques that employ differential oper-
ators, like in [19], to meshes, which we plan to investigate
on in the future, as well as on alternative representations of
differential coordinates.
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plicit fairing of irregular meshes using diffusion and curva-
ture flow. In Proceedings of ACM SIGGRAPH 99, pages
317–324, 1999.

[8] G. Farin.Curves and surfaces for computer aided geometric
design: a practical guide. Academic Press, 1992.

[9] M. Fiedler. Algebraic connectivity of graphs.Czech. Math.
Journal, 23:298–305, 1973.

[10] D. Forsey and R. Bartels. Hierarchical b-spline refinement.
In Proceedings of ACM SIGGRAPH 88, pages 205–212,
1988.

[11] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution
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Figure 6. The effect of applying local rotations to the differential coordinates. The left column displays the original models.

Middle column shows an edit performed without local rotations. Note the distortion of the letters and the circle stamps. The

right column shows the result of the same editing operation with local rotations applied. The orientation of the details is

much better preserved.
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Figure 7. Defining different ROIs and applying the editing technique. The handle vertex is located at the tip of the front arm,

marked by the bright sphere. The left column displays the original model with anchor vertices shown by small dots (they

mark the padded boundary of the ROI). In the right column the result of an editing operation is displayed. The small ROI in the

top row results in a local change of the shape of the arm, whereas the larger ROI in the bottom row allows for a more global

deformation.

original edited

Figure 8. We have used our editing technique to design a new facial expression for the Octopusmodel. Note that creating the

high-frequency detail of the brow requires local edits, whereas bringing the two eyes closer is a more global operation. The

locality control is achieved merely by changing the radius of the ROI.
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