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Figure 1: A smooth 4-PolyVector field is generated from a sparse set of principal direction constraints (faces in light blue). We
optimize the field for conjugacy and use it to guide the generation of a planar-quad mesh. Pseudocolor represents planarity.

Abstract
We introduce N-PolyVector fields, a generalization of N-RoSy fields for which the vectors are neither necessarily
orthogonal nor rotationally symmetric. We formally define a novel representation for N-PolyVectors as the root sets
of complex polynomials and analyze their topological and geometric properties. A smooth N-PolyVector field can
be efficiently generated by solving a sparse linear system without integer variables. We exploit the flexibility of
N-PolyVector fields to design conjugate vector fields, offering an intuitive tool to generate planar quadrilateral
meshes.

1. Introduction

The design of tangent vector fields on discrete surfaces
is a basic building block for many geometry process-
ing applications. Such fields are often used as target gra-
dient vectors for surface remeshing [BLP∗13, NPPZ12],
parametrization [LZX∗08] and texture synthesis [LH06]. In
addition, they can be used to study and detect symmetries
on surfaces [BCBSG10], and for architectural geometric de-
sign [LXW∗11, PBSH13].

Many applications require the design of multiple vector
fields (vector sets) coupled in a nontrivial way. Notable ex-
amples are principle curvature directions, which are defined
up to a sign permutation, or vectors representing compres-
sion forces in architectural structures. Sets of more than two
vectors are used for meshing of triangular, quadrilateral and
hexagonal meshes [NPPZ12].

The ubiquitous Rotationally-Symmetric fields, commonly
denoted as “N-RoSy fields”, are special vector sets compris-

ing N unit-length vectors related by a rotation of an integer
multiple of 2π/N. The 4-RoSy fields are particularly attrac-
tive since they commonly represent the ideal candidate gradi-
ents of a surface parametrization. The π/2-rotation invariance
is employed in the generation of quad meshes on surfaces
with a nontrivial topology [BLP∗13].

However, N-RoSy fields are often too restrictive for practi-
cal applications. Designers often wish to manually control the
anisotropy of the field and allow deviation from uniformly-
sized quads and right angles in order to increase the design
space and, e.g., better adapt the discretization to the underly-
ing shape, its semantics and articulation [TPSHSH13].

We introduce a novel representation for general unordered
vector sets in which no vector is necessarily related by any
symmetry or magnitude to another. We call such vector sets
and their representation N-PolyVectors (N-PV). We support
arbitrary angles between vectors and an arbitrary magnitude
for each vector. We represent an N-PolyVector by the set of
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coefficients of a complex polynomial, where the individual
vectors are the roots of that polynomial. This representation
generalizes N-RoSy vector sets in an intuitive way: an N-
RoSy is the root set of the polynomials of the form zN −uN .
Our representation supports efficient design of vector sets
requiring neither integer period jumps, nor explicit pairings
of vectors between adjacent sets on a manifold. We formally
define parallel transport, smoothness and singularities of N-
PolyVector fields of arbitrary degree N.

N-PolyVector fields can be used to design discrete conju-
gate vector fields [LPW∗06, BS08]. Such fields are necessary
in the remeshing of surfaces using planar quad (PQ) and pla-
nar hexagonal elements. These meshes recently gained con-
siderable interest for their use in architectural applications,
since they can be realized by planar glass, steel or wooden
structures. Using orthonormal N-RoSy fields is far too restric-
tive for that purpose because only principal direction fields
are both conjugate and orthogonal. Moreover, minimal and
maximal principal directions cannot be interchanged, and
therefore the singularities of a principal-direction field are
limited to±k/2 indices, instead of the±k/4 indices possible
for general 4-RoSy fields.

The contributions of this paper are the following:

1. We formally define N-PolyVector fields, describe their
topology, and provide a consistent definition of parallel
transport, smoothness and singularities.

2. We show how to compute smooth N-PolyVector fields
with prescribed bounds on angles.

3. We show how to compute conjugate N-PolyVector fields
for remeshing with planar elements.

2. Related work

N-RoSy fields. 4-RoSy fields, commonly called cross fields,
were introduced in [HZ00] for cross hatching, a technique
for non-photorealistic rendering of surfaces. They were gen-
eralized to N-RoSy fields of arbitrary degree N in [PZ07]
and [RVLL08]. N-RoSy fields represent natural quantities on
surfaces, such as the principal curvature directions, but they
can alternatively be designed using a given set of constraints.
Common design approaches generate smooth N-RoSy fields
with a prescribed set of topological singularities [RVLL08,
CDS10], or alternatively opt for smooth fields that satisfy
some directional constraints [BZK09, RVAL09, KCPS13].

Non-orthogonal vector sets. Zadravec et al. [ZSW10]
generalize cross fields, allowing them to be non-orthogonal,
while focusing on the generation of conjugate vector fields
with strong restrictions on the allowed singularities. Non-
orthogonal conjugate vector-field design was further ex-
panded in [LXW∗11]; however, their method still requires
explicit derivation of the matchings between the vector sets
on the two sides of a face. In order to avoid the hard, nonlinear
and integer program involved in finding these matchings, they
replace it with an equivalent (but still significantly involved)

nonlinear problem involving only real variables and periodic
functions . As we show in Section 4.3, our representation
makes it possible to optimize for the same constraints, incor-
porating the vector magnitude, providing a larger solution
space and a simpler, continuous optimization. [PPTSH14] in-
troduces frame fields, which are a composition of a cross field
and a field of affine transformations of the tangent planes.
Frame fields can be used for anisotropic quadrilateral remesh-
ing: the field induces an altered Euclidean metric that leads
to an anisotropic parametrization. However, the frame field
representation they introduce cannot be extended to handle
arbitrary vector sets, in contrast with the one we present in
this paper (see Section 4.4).

Applications. As already mentioned, 4-RoSy fields can be
used to create non-photorealistic renderings based on a cross-
hatching pattern [HZ00,PZ07]. A 4-RoSy field can also guide
the remeshing of a triangle mesh into a pure quadrilateral
mesh whose edges are aligned with the field [BLP∗13]. Sim-
ilarly, in [NPPZ12] a 6-RoSy field is employed to generate
isotropic triangle meshes. Cross fields are used in [PBSH13]
to estimate the flow of forces in self-supporting (masonry)
structures. Finally, a non-orthogonal cross field, also called
conjugate direction field, has been proposed in [LXW∗11]
to create planar tilings for architectural applications. N-
PolyVector fields provide a general framework to represent
and process the fields used by all these applications.

3. N-PolyVector fields with complex polynomials

Given a triangle meshM= {V,E ,F}, we consider the plane
of every triangle f ∈ F as a discrete tangent space, and the
entire collection of these planes as the tangent bundle of the
surface. Consequently, in our framework, tangent vectors are
defined on the faces of the triangles, and the tangent vector
fields are thus piecewise constant. A vector field is defined
as a given assignment of a single vector per face (formally,
a section of the tangent bundle). A general N-PolyVector,
N > 0, is an unordered set of N tangent vectors in a single
face, and an N-PolyVector field is defined accordingly. In the
following, we provide some background on a representation
of N-RoSy by the complex parametrization of faces, and then
show how it generalizes to represent N-PolyVector fields.

3.1. Piecewise-constant complex N-RoSy fields

We identify every tangent space (face) f with the complex
plane C by choosing an arbitrary orthonormal basis (Fig-
ure 2). A vector in the tangent plane is then defined by a
single complex number. However, two adjacent faces have
different bases, and in order to compare adjacent vectors we
require a discrete connection [dC76], which defines a parallel
transport between neighboring bases.

The discrete Levi-Civita (LC) connection [CDS10] is the
change of basis between two neighboring faces f ,g ∈ F
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Figure 2: Complex Levi-Civita connection. The vectors
u f ,ug, though represented by different complex numbers in
different coordinate systems, are LC-parallel since they are
the same vector w.r.t. a unified representation, as in Eq. (1).

across a common edge e ∈ E , which is represented in the
respective bases by the edge vectors e f ,eg ∈C. Formally, the
vector u f in the tangent space of face f is LC-parallel to the
corresponding vector ug in the tangent space of face g if and
only if ug = u f (e f )

−1eg; for normalized edge vectors this
reduces to ug = u f ē f eg , where we denote by x̄ the complex
conjugate of x. Note that the complex conjugate should not
be confused with the notion of conjugate vector fields that
we introduce in Section 4.3.

This formulation is conceptually equivalent to unfolding
the triangle flap ( f ,g) onto a plane and simply translating the
vector. This intuition leads to an equivalent, symmetric and
more intuitive formulation: Following the flattening of the
flap, we may unify the two representation bases by assigning
a new mutual basis, so that the mutual edge vector e becomes
the canonical real axis in both. Then the two vectors, one in
each face, are LC-parallel if and only if they have an identical
representation with respect to the unified basis (see Figure 2):

ugēg = u f ē f . (1)

An N-RoSy vector field consists of the following N vectors
per face: {

u f exp
(

i
2πk
N

)
| 0≤ k ≤ N−1

}
, (2)

which can be compactly expressed as the N-th order roots
of a complex number (u f )

N . Two adjacent N-RoSy vectors
u f ,ug are LC-parallel if there is a matching of the individual
roots such that matching roots are LC-parallel. This reduces
to the following condition:

(ugēg)
N = (u f ē f )

N . (3)

3.2. Complex N-PolyVectors as complex polynomials

An N-RoSy field can be represented as the variety (root set) of
the following complex polynomial: Pf (z) = zN − (u f )

N . It is
then immediately clear how to generalize this representation

to unambiguously encode a general unordered set of face-
based vectors {u0,u1, · · · ,uN−1}:

Pf (z) = (z−u0) · (z−u1) · . . . · (z−uN−1). (4)

Alluding to the polynomial representation, we denote these
unordered vector sets and their polynomial representation as
N-PolyVectors, or N-PV in short.

If there is a subset of M symmetric vectors (M ≤ N) within
an N-PolyVector, its term within the polynomial is zM−uM .
An example is shown in Figure 3.

In essence, a polynomial represents an unordered root set
by the polynomial coefficients in the monomial basis. For
example, consider a 2-PolyVector consisting of two vectors
u and v: the corresponding polynomial is P(z) = (z−u)(z−
v) = z2− (u+ v)z+uv. The coefficients we use to represent
this 2-PolyVector are then −(u+ v) and (uv) (the coefficient
of zN is always 1), and they determine the u,v explicitly up to
order. Also notice that if u =−v, the 2-PolyVector is in fact
a 2-RoSy, and the coefficients “degenerate” to 0 for z1 and
−u2 for z0, as expected.

Figure 3: An LC-parallel N-PolyVector field comprising two
independent vector fields u1,u2 and a 2-RoSy field (u3)

2.
Its polynomial is P(z) = (z− u1)(z− u2)(z

2− u2
3). Notice

that the equivalence is invariant to change of order and
sign across the common edge. The resulting coefficients are
(−u1−u2, u1u2−u2

3, (u1 +u2)u
2
3, −u1u2u2

3).

LC-transport for N-PV fields. We can generalize Eq. (1)
(see Section 3.1) in a similar spirit as above. LC-parallel
N-PolyVectors are defined by having individual matching
LC-parallel roots across edges. The main advantage of N-
PolyVector fields, compared to [LXW∗11], is that we can
define transport without the explicit matchings, avoiding inte-
ger variables and/or challenging nonlinear energies in the
subsequent optimizations.

Instead of transporting the roots directly, we transport
the coefficients of the polynomials (which are also “vec-
tors”, or complex numbers) by substituting the polynomial
in Eq. (4) with Eq. (1). Suppose we have two N-PolyVectors
{u f ,0, u f ,1, · · · , u f ,N−1} and {ug,0, ug,1, · · · , ug,N−1} on
face f and face g, respectively. Then the two N-PolyVectors
are LC-parallel if and only if the following polynomials:

Pf |e f
(z) = (z−u f ,0ē f ) . . .(z−u f ,N−1ē f )

Pg|eg
(z) = (z−ug,0ēg) . . .(z−ug,N−1ēg) (5)

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



O. Diamanti & A. Vaxman & D. Panozzo & O. Sorkine-Hornung / Designing N-PolyVector Fields with Complex Polynomials

are equivalent (respective coefficients are equal). See Fig-
ure 3 for an example. Notice that every coefficient is then
transported by the corresponding power of the common edge
vector. For instance, the constant coefficient ∏

N−1
m=0 (−u f ,m)

is transported by (ē f )
N . This generalizes the LC-transport in

the N-RoSy case.

3.3. Smooth N-PolyVector fields

Connections, as parallel transports, induce curvature inside
closed domains. This curvature is measured by the change in
vectors as they are parallel-transported around the boundary
of that domain. The LC connection induces the Gaussian
curvature, which, in the discrete setting, amounts to the sum
of angle defects enclosed within the transport path [CDS10].
Thus, Eq. (5) cannot be satisfied globally on a surface unless
it is developable (has vanishing Gaussian curvature). Con-
sistent vector field design is equivalent to defining a trivial
connection between faces. A N-PV field is considered per-
fectly smooth across an edge if its polynomial coefficients
are LC-transported, which then means that every vector on
one face is LC-transported to a single vector on another face.
Therefore, we wish to solve for N-PV fields that define a
trivial connection that is “as-LC-as-possible”. We model this
by satisfying Eq. (5) in the least squares sense. Suppose that
the coefficients of the N-PolyVector in face f are denoted
as {x f ,m}, where coefficient xm belongs to the monomial zm.
Thus, the energy we seek to minimize is:

Esmooth =
N

∑
m=0

∑
( f ,g)≡e∈E

∣∣x f ,m(ē f )
m− xg,m(ēg)

m∣∣2. (6)

The connection vectors (the deviation from LC) are de-
fined as: Te,m = xg,m(ēg)

m/x f ,m(ē f )
m. In terms of curvature,

trivial connections induce zero curvature around any closed
path that does not contain singularities. The argument of a
connection vector is called a connection angle, encoding the
rotation deviation from the LC-transport. Although this term
is defined here to refer to the angles between the transported
coefficients, we will use the same term (with appropriate clar-
ification) to refer to the transport angles between individual
vectors/roots.

3.4. PolyVector-field topology

Knowledge of the connection vectors Te,m is not sufficient
to disambiguate the relations between pairs of single (indi-
vidual) vectors, since the sets are unordered. Therefore, the
topology of the field can only be fully determined by defin-
ing the explicit matchings between individual vectors across
edges. Given such explicit matchings, singularities are de-
fined unambiguously as closed 1-ring routes in which the
matches are not consistent [RVLL08] . We next show that
there is a canonical and simple way to define singularities of
an N-PolyVector field, by showing that its topology is equiv-

alent to the topology of the associated “canonical” N-RoSy
field.

Consider an N-PV field {u f ,0, u f ,1, . . . , u f ,N−1}, and as-
sume w.l.o.g. that the vectors on each face are indexed in
a counterclockwise (CCW) order. Again, w.l.o.g., we con-
sider per-vector transports that preserve CCW order, i.e., if
vector u f ,m is matched with vector ug,n in the adjacent face,
then u f ,m+1 is matched with ug,n+1 as well (indices are al-
ways considered modulo N). The entire matching can then be
parametrized by (m,n). Suppose that a closed matching path
around a 1-ring of vertex v returns to vector m+ k in the orig-
inal face. We then define the singularity index of vertex v as
k
N . Regular vertices are defined by k = 0, where no mismatch
occurs , and we return to the same initial vectors. Notice that
this complies with the regular definition of singularities for
N-RoSy fields.

Figure 4: A singularity of an N-PolyVector field (orange) is
also a singularity of the N-RoSy field induced by its coefficient
x0 (dotted grey). In the special case of 4-PolyVector fields, the
associated 4-RoSy is made of the bisectors of the PolyVectors.

Since we define the matching combinatorially, it is natural
to try and quantify this topology in a manner that is invariant
to the individual angle spacings between vectors in the same
face. To achieve that , we look at the total sum of angles
that each vector in the set {u f ,m} accumulates after a closed
path around v, where v is a singularity of order k

N . Since m
returns to vector m+ k in the same face, m+ 1 returns to
vector m+k+1 and so on, and since the total sum of ordered
angles between consecutive vectors in the set is obviously 2π,
we get that the sum of angles accumulated in the set {u f ,m},
returning to {u f ,m+k}, is exactly 2πk, regardless of the indi-
vidual angles involved. The proof for the inverse direction
(sum leads to singularity index) follows a similar claim. For
an intuitive explanation of an index k of singularity in that
manner, imagine a group of people sitting on chairs organized
in a circle. The positions of the chairs along the circle may be
irregularly spaced, corresponding to the tips of the vectors of
our N-PV . When everyone walks and moves k chairs coun-
terclockwise around the circle, the total walking distance of
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the group is 2πk, regardless of the spacing between the chairs
on the circle.

In order to quantify the topology with PolyVector coef-
ficients, let us consider again the matching (m,n) between
adjacent faces f ,g. Denote the sum of the individual transport
angles (i.e., the arguments of the individual transport vectors
for each of the vectors in the N-PV ) as Sm,n ( f ,g indices
are dropped for clarity). In light of the above, if we choose a
different matching (m,n+ j), we get the sum Sm,n +2π j. We
thus get that all the possible order-preserving matchings are
encoded in a set of identical connection vectors, i.e., those
whose argument is Sm,n + 2π j. The corresponding connec-
tion vector is in fact nothing more than the connection vector
between the free coefficients Te,0 = xg,0/x f ,0, arg

(
Te,0
)
=

Sm,n +2π j . Therefore, the singularities of an N-PV field are
the singularities of the N-RoSy field represented by its free
coefficient x0. By this definition, we generalize the results
obtained by [LXW∗11], as they proved that the singularities
of their 2-vector fields are equivalent to those of their bisec-
tor 4-RoSy field, which is described exactly by the constant
coefficient of the corresponding PolyVector field.

However, note that by knowing the connection vectors, for
both our N-PV and its associated N-RoSy, we merely enu-
merate all the possible matchings (since the actual connection
vectors are identical for any j). The topology of the field still
has a single matching degree of freedom per edge, for choos-
ing the actual j. This is equivalent to choosing a branch for
the complex logarithm, in order to uniquely retrieve the argu-
ment of the connection vector Te,0. A natural choice, which
we employ in our work, is to choose the principal branch,
i.e., choose a j such that arg

(
Te,0
)
∈ (−π,π]. For N-RoSy

fields, this is equivalent to choosing a matching between a
(parallel-transported) vector in f to its closest vector in g. We
call this choice principal matching.

The coefficients of an N-PV thus have a geometric mean-
ing; as we established, the N-RoSy field of the free coeffi-
cient is topologically equivalent to the N-PV field, and we
can therefore treat it as the best approximating N-RoSy field
to the given N-PV field. Furthermore, other (order > 0) coef-
ficients vanish in the limit where N-PV becomes a RoSy field.
Thus, they measure the deviation from symmetry as well.
We analyze the coefficients of 4-PV fields (frame fields) in
Section 4, and leave the general analysis of the higher-order
coefficients of N-PV fields for future work.

3.5. Face-based and vertex-based tangent spaces

Our entire framework is face-based, which is a common
approach to tangent vector-field design methods. As we ap-
ply our framework to parametrization, for the purpose of
remeshing, this framework is compatible with the defintion of
vertex-based scalar functions that interpolate linearly across
triangles, since our vector sets can serve as candidate gradient
fields. Moreover, our representation generalizes [KCPS13],

Figure 5: Two examples of designing a 6-PolyVector field
(black) from a sparse set of directional constraints (red). The
field degenerates into a 4-PolyVector only in the vicinity of
the degenerate constraints in the bottom part of both shapes.

which is a special case limited to the representation of N-
RoSy fields. In their formulation, the vector sets are stored on
vertices and interpolated on triangles. Since their discretiza-
tion is not directly applicable to linear parametrization prob-
lems, we opt for a piecewise-constant discretization which is
numerically more robust (it does not require Chebyshev ex-
pansions). Note that, much like all other piecewise-constant
discretizations of N-RoSy fields, it is not convergent under
refinement.

3.6. Constrained N-PolyVector field design

N-PolyVector fields can be interactively designed by speci-
fying alignment constraints on a sparse set of faces and by
automatically finding the globally optimal, smoothest field
that interpolates them. Our design algorithm is divided into
three steps:

1. The alignment constraints on the faces are converted to
the PolyVector representation.

2. The coefficients of the polynomials are harmonically in-
terpolated over the entire surface.

3. The directions per face are reconstructed by finding the
roots of the per-face polynomials.

While the first step is trivial, since it only involves the
computation of the coefficients of the polynomials which
can be expressed in closed form, the other two steps are
more involved and are described in detail in the next two
paragraphs.

Harmonic interpolation of the polynomial coefficients.
We extend the well-known uniform face-based Laplace oper-
ator L :RF →RF that operates on scalar functions onM
that are constant on faces. The operator can be written as a
|F|× |F| matrix:

L = ∑
( f ,g)≡e∈E

L( f ,g), (7)

where L( f ,g)[ f , f ] =−1, L( f ,g)[ f ,g] = 1.

The L f ,g are |F|× |F| matrices whose entries are zeros ex-
cept entries [ f , f ] and [ f ,g] as specified above. We define
a corresponding complex Laplacian matrix for our problem
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by taking the parallel transport into account (see Section
3.3). Observe that Eq. (6) is separable with respect to the
coefficients of the polynomial, and we can thus separately
interpolate each coefficient. The Laplacian matrix Lm for the
coefficient of degree m is similarly defined as:

Lm = ∑
( f ,g)≡e∈E

Lm,( f ,g), (8)

where Lm,( f ,g)[ f , f ] = (ē f )
m, Lm,( f ,g)[ f ,g] =−(ēg)

m.

The polynomial coefficients are harmonically interpolated
by solving a sparse linear system, which is prefactored using
a sparse LU factorization:

Lm x̂ = 0, s.t. x̂ j = x̂0
j , j ∈ C, (9)

where x̂ stacks all the degree-m coefficients for all faces in
a single vector. The variables that correspond to the user
constraints (C is the set of constrained faces) are fixed to the
values x̂0, extracted from the directional constraints.

Root factoring. After obtaining the coefficient fields xm for
every monomial degree m, we can factor the face-based poly-
nomials to produce the roots, i.e., the actual vector sets. The
root-finding is done by finding the eigenvalues of the com-
panion matrix [HJ85]. An important property arises from
this computation: the coefficient of each monomial degree is
computed independently from others, and since the interpola-
tion is harmonic, it obeys the maximum principle. Therefore,
if the interpolation constraints for a certain coefficient de-
gree are all zero, the entire mesh will get a zero coefficient
for that degree. For instance, if the provided constraints are
purely N-RoSy, the entire interpolation result is N-RoSy by
definition since only the constant coefficient (x0) will be inter-
polated. Moreover, degenerate configurations which are the
result of coefficients xm, m≥ 1, with a large magnitude can
only be obtained if forced by the user-provided constraints
(see Figure 5).

4. Frame fields

For the rest of the paper, we focus on the special case of
frame fields, which are 4-PolyVector fields comprising two
coupled (i.e., interchangeable) 2-RoSy fields u,v. They are
represented by the following polynomial:

Pf (z) = (z2−u2)(z2− v2). (10)

For brevity, we denote the resulting coefficients as
x1 =−(u2 + v2) and x0 = u2 v2.

Frame fields are particularly important in geometry pro-
cessing applications, since they can be used for anisotropic
[PPTSH14] or planar [LXW∗11] quad remeshing. As we
target anisotropic remeshing using frame fields, we detail
two design options with our framework: computing fields
with bounds on angles between u and v (Section 4.2), and
computing conjugate vector fields (Section 4.3), that are used
to generate PQ meshes for architectural rationalization.

The constraints for all our results (unless explicitly stated
in the captions) were generated by sparsely sampling from
the principal directions. The constrained faces can be picked
from mesh regions that are most curved, or closer to being
parabolic [BZK09] .

4.1. Frame field coefficients

The complex coefficients x1,x0 have an intuitive geometric
meaning that derives from the general property explored in
Section 3.4. Cross fields, represented by the polynomials of
the form P(z) = z4−w4, are special cases of frame fields
in which x1 = −(u2 + v2) = 0. In this case, the coefficient
x0 =−w4 is a dual to the represented cross field w4. To put
it geometrically, x0 is the bisector cross-field to w4. A more
general claim is the following:

Lemma 4.1 Given a set of two general 2-RoSy, u and v,
the coefficient x0 = u2v2 represents the cross of bisectors
between u and v by its root set { 4

√
|x0|exp

(
i kπ

2

)
| 0≤ k≤ 3}.

The coefficient x1 =−(u2 + v2) represents the deviation of
u,v from forming a perfect cross field.

Proof . One bisector between u and v is the result of rotating
mid-way between the two, i.e., b = u

√
vū, and we immedi-

ately get b4 = |u|2u2v2. Thus b is one of the bisectors up to
magnitude, and (x0)

4 represents the bisector cross field.

The exact nature of the coefficient x1 is a bit harder to
discern in general. However, notice that when both u and v
have unit length, we may apply a rotation to u and v so that
the bisector x0 becomes the canonical basis for the 2D plane .
Then, the new vectors u′,v′ are complex conjugates v′ = ū′,
and x1 = u′2+ ū′2 = 2cos(2ψ), where ψ is the angle between
u or v and their bisector, measuring the deviation from being
a perfect cross.

4.2. Angle-bounded fields

When designing frame fields for the purpose of quadrilateral
remeshing, it is useful to bound the minimal angle in each

70o 

90o

Figure 6: A smooth 4-PolyVector field (left) is optimized
to satisfy a global angle bound of 70 degrees (right). Note
the small angles in the left model are caused by manually
placing constraints with an angle defect in the torso.
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frame to help avoid creating degenerate quadrilaterals. We
present an algorithm that efficiently generates a smooth frame
field that satisfies a given minimal angle bound in each mesh
face.

Formulation. We can express the bound on the angle as a
nonlinear inequality constraint. Let θmin be a given angle
tolerance; we wish to find a field which satisfies:

〈u,v〉 ≤ |u| |v|cosθmin. (11)

Unfortunately, there is no trivial way to express this angle
bound in terms of our coefficients x0,x1. However, note that
our conditions are local and per-face, whereas our smooth-
ness, measured in x0,x1, is global. We can therefore employ
an effective local-global algorithm, as described next.

Algorithm. Our algorithm iteratively alternates between two
steps: (1) A local step, which changes the field per face to
the closest field that satisfies the angle bound constraints,
followed by (2) a global step that generates a smooth field
that is close to the field computed in step (1).

In the local step, we extract the u,v per face from the
result of the previous global step, and rotate them until they
agree with the angle bound. We find the bisector vector that
partitions the smallest angle θ between any pair of vectors
{±u,±v}. The angle between each of those vectors and the
bisector is then θ/2. To locally enforce the minimum angle
bound θmin, if θ < θmin, we symmetrically rotate the two
vectors away from the bisector.

In the global step, we compute the coefficients x̂0, x̂1 per
face from the u,v obtained in the local step, and look for a
solution which is both smooth and close to the solution com-
puted in the local step. Therefore, we minimize the following
smoothness energy, with an additional term that attempts to
align to the prescribed frames:

Em
global = Em

smooth +λ |xm− x̂m|2 , (12)

where λ is initialized at 100, and is multiplied by 1.5 at each
step, to ensure convergence.

Note that any solution obtained from the local step is al-
ready guaranteed to satisfy the angle bound. However, the
global step might violate it by enforcing smoothness. We
consider the algorithm as having converged when the global
step does not cause angle bound violations (in which case the
local step does not change the field).

Convergence. In our experiments, the algorithm converges
in 50-100 iterations, always enforcing the angle bound in all
faces, with minimal impact on the field smoothness, as shown
in Figure 6. Note that the field is practically unaffected on
the faces that already satisfy the bound.

Anisotropic quad remeshing. We apply the angle bound to
improve anisotropic quad remeshing in Figure 7. We compare
a smooth field, interpolated from a sparse set of constraints,
with the the result of its optimization to satisfy an angle

Figure 7: Enforcing an angle bound on a frame field results
in an anisotropic quadrilateral mesh with a higher quality
(right) than the mesh obtained with a field that is as smooth as
possible (left). The fields used to guide the quadrangulation
are shown in Figure 6.

bound of 70 degrees. The quality of the elements increases
considerably, generating a better-quality mesh that is more
suitable for numerical simulation or Catmull-Clark subdivi-
sion. The anisotropic quadrangulation is created using the
deformation-based algorithm proposed in [PPTSH14].

4.3. Conjugate vector fields

In a nutshell, conjugate vector fields describe directions on
a manifold that correspond to infinitesimally small planar
quads. Therefore, creating a quadrangulation where opposite
edges are aligned with conjugate directions is a suitable ap-
proximation of planar quads and a good starting point for a
quad planarization algorithm. We briefly detail the definition
of conjugacy and propose an algorithm to efficiently gener-
ate conjugate vector fields using 4-PolyVector fields while
satisfying user-provided constraints.

Two tangent vectors p,q in the same tangent space are con-
jugate iff they are orthogonal w.r.t. the second fundamental
form on that tangent space: II(p,q) = 0. In a tangent space
parametrization, this amounts to [px, py]S[qx,qy]

T = 0, where
S ∈R2×2 is the shape operator [LPW∗06]. Two vectors are
both orthogonal (in the metric) and conjugate iff they are the
principal directions at that point, since these are the eigen-
vectors of the shape operator. Note that the shape operator is
only positive definite in elliptic regions (where the Gaussian
curvature is positive), and that it is scalar in umbilical regions
where both principal curvatures κ1,κ2 are equal. Therefore,
asymptotic directions in hyperbolic regions are self-conjugate,
and all directions in a parabolic region are conjugate to the
direction of zero curvature.

Formulation. Following [LXW∗11], we express the conju-
gacy condition in a face as:

κ1(u
T d1)(v

T d1)+κ2(u
T d2)(v

T d2) = 0 (13)
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Figure 8: A smooth frame field (left) is optimized into a
conjugate frame field (right).

where κ1,κ2 are the principal curvatures, d1,d2 are the cor-
responding, normalized principal directions, and u and v
are two vectors of the frame field in explicit column vector
form. Since the principal directions are fixed, we can rewrite
Eq. (13) as a real quadratic form w.r.t. the coordinates of u
and v:

(u,v)T H (u,v) = 0, where (14)

H =

(
0 G1

G2 0

)
, G j = κ j d j dT

j . (15)

Similarly to the angle bound, minimizing the PolyVector
smoothness energy subject to these nonlinear constraints is
difficult in general, and a direct nonlinear optimization is
slow and prone to getting stuck at local minima. Fortunately,
the constraints exhibit the same local-global properties as the
angle-bound constraints and we can use a similar algorithm.

Local step. In the local step, we want to find u,v closest to
given u0,v0, obtained from the global step, so that Eq. (13)
is satisfied. The problem reduces to projecting u0,v0 on the
quadric parametrized by H, which is a specific quadratically-
constrained quadratic program problem. We explain the de-
tails of this projection in Appendix A.

Global step. The global step is similar to that of the angle
bound algorithm (Eq. (12)), but with a meaningful change:
principal curvatures and directions are less reliable in near-
planar regions, where the shape operator is almost an identity.
Moreover, there is a greater flexibility in the generation of
planar quads in such regions, and we should thus weigh
smoothness over strict conjugacy there. We therefore compute
the absolute Gaussian curvature of each face: ∀ f ∈ F , K f =
|κ f ,1 κ f ,2|, normalize it over the entire mesh so that K̂ f ∈
[0,1], and adapt the data term in the global energy accordingly.
We then get the following:

Em
global = Em

smooth +λK |xm− x̂m|2 , (16)

where K = diag
(
K̂ f
)
.

Convergence. We stop the iterations when the sum of the
absolute values of the residuals of Eq. (13) is less than 10−4

(in our experiments, the input field is rescaled so that u,v are
close to having unit length). The algorithm converged in less
than 50 iterations for all our examples. We show the result of
this optimization in Figure 8. The input is a smooth field, not

1%

0%

Figure 9: Our algorithm supports constraints which are not
aligned with principal directions. Left to right: directional
constraints (generated by manually drawing one of the direc-
tions and setting the other to its conjugate) , optimized smooth
conjugate field, planarity before and after planarization, final
quad mesh.

aligned with the principal directions. The iterations produce
a conjugate field that is both smooth and nearly-orthogonal
in places where the principal curvatures are strong. Our al-
gorithm also handles directional constraints which are not
necessarily aligned with the principal directions (see Figure
9). We next show how to regularize orthogonality and avoid
asymptotic directions.

Orthogonality control. We can additionally control the or-
thogonality of the frame field by minimizing the magnitude
of the coefficient x1 (recall from Section 4.1 that when x1
is zero, the field is a perfect cross field). This is achieved
by adding a term to the energy of the global step for the x1
coefficient (Eq. (12)):

E1
orth = E1

global +w |x1|2 . (17)

In Figure 10, we show the effect of varying the parameter
w; as the value increases, the field becomes more similar to
a cross field, and aligns to the principal curvature directions,
since it is constrained to stay conjugate.
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Figure 10: Left to right: conjugate fields regularized for
orthogonality with different values for w (0, 1 and 10). The
rightmost example is extreme: the regularization dominates
and leads to a field that is close to the principal directions.
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Figure 11: Planar quad remeshing of architectural models with our framework. The colors represent face planarity values.

Optimizing for orthogonality can be particularly beneficial
for the design of conjugate vector fields, as it avoids asymp-
totic self-conjugate directions that can occur in hyperbolic
regions. However, an excessive regularization of x1 simply
reduces the field to a cross field, which greatly restricts the de-
sign space, leading to a result similar to the principal direction
field, which can be noisy and unstable.

Planar quadrangulation. We demonstrate the effectiveness
of our conjugacy optimization by generating planar quad
remeshing of a variety of architectural surfaces (Figures 1
and 11). We start by generating a smooth frame field that
is aligned with a sparse set of constraints extracted from
curvature using the thresholding algorithm of [BZK09]. The
field is optimized for conjugacy until convergence and used
to guide a mixed-integer parametrization [BZK09]. The quad
mesh is then extracted with [EBCK13] and planarized with
[LPW∗06] until it reaches the desired planarity threshold
of 1% (the percentual ratio of the distance between the two
diagonals in the quad to the average diagonal length).

Figure 12: Our design algorithm (right) generates a result
similar to [PPTSH14] (left) for the special case of frame
fields.

4.4. Comparisons

Frame field interpolation. [PPTSH14] proposes an algo-
rithm to interpolate frame fields for the purpose of anisotropic
quad remeshing. Our algorithm produces very similar results
when the same constraints are used, as shown in Figure 12.
The two fields are very similar, with a tendency of our method
to add a few extra singularities in highly curved regions. The
main advantage of [PPTSH14] is that it can interpolate scale
and non-orthogonality separately, but it comes at the price of
not being extendable to general PolyVector fields.

Conjugate vector fields. [LXW∗11] proposes an algorithm
to generate conjugate vector fields. As we demonstrated
above, our algorithm can also be used for the same purpose
and it generates slightly smoother results, as shown in Figure
13. While the results are comparable, our algorithm is simpler
to implement as it does not require the solution of a difficult
nonlinear optimization problem .

5. Concluding remarks

We formally introduced N-PolyVector fields, including their
topology, parallel transport, smoothness and singularities. We
demonstrated that they can be employed in many practical
applications in geometry processing, such as anisotropic and
planar remeshing.

Limitations. Our framework has two major limitations: the
first is that, similarly to [KCPS13], we do not handle sin-
gularities larger than ± 1

N , as our singularities are measured
as arguments of numbers to the power of N, which cannot
express angles greater than ±π unless the angles are treated
as variables. A possible direction for future work here is to
enforce such singularities (as in [CDS10]) and incorporate
the prescribed rotation into the same framework.

The second limitation is that in our framework, scale is
coupled with rotation. Thus, when the constraints are as-
signed very sparsely, the energy might suppress the effect
of rotations by reducing the scale (see Figure 14 for such
an example). This is not the case in methods that explicitly
interpolate rotations, such as [PPTSH14]. Fortunately, we
do not observe the same phenomenon when using constraints
that are reasonably distributed over the mesh, even when they
are quite different from each other in terms of alignment.
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Ours - Smooth field Ours - Conjugate field [LXW*11]
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Figure 13: We generate a quad mesh from three different
fields: a smooth N-PV field (left column), an optimized con-
jugate field (middle column) , both generated with our algo-
rithm, and a conjugate field optimized with [LXW∗11] (right
column). The different stages of the algorithms are depicted
in the rows. Top to bottom: frame field, per-face deviation
from conjugacy, planarized quad mesh, face planarity values.

Continuity and smoothness. Our algorithm creates smooth
fields when the variables are the PolyVectors coefficients, by
minimizing their Dirichlet energy. However, given an explicit
matching, the Dirichlet energy of the individually-matched
roots (single vectors) is not necessarily minimized when the
energy of the PV coefficients is. It is well-known [HM87]
that the roots are a continuous function of the polynomial
coefficients, but discerning the exact measure of root-based
smoothness is an involved analysis, and we leave the exact
derivation for future work. We have not found any case of
instability in root-based smoothness in practice.

Future work. The most direct continuation of this work is to
study integrable PolyVectors fields that would allow generat-
ing parameterizations whose gradients match the PolyVector
fields exactly. In addition, quality parameterization should
require the study of vector-set fields that guarantee globally
bijective parameterizations. We further plan to apply our
method in other scenarios that require independent vector-set
fields, such as deformations, physical simulations (with a
proper generalization to three dimensions) and field design
that respects symmetries on surfaces [PLPZ12].

Figure 14: If the constraints are very sparse (left), we ob-
serve a reduction in scale, caused by our smoothness energy.
However, this is not a practical problem in our experiments,
since this phenomenon disappears with just a few more con-
straints (right).
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Appendix A: Projection on a quadric

As mentioned in Section 4.3, finding the nearest conjugate
vectors for prescribed vectors reduces to the problem of pro-
jecting a point y0 onto a quadric yT Hy = 0, where the quadric
is only assumed to be symmetric, but not necessarily positive
or negative definite (since it stems from the shape operator).
We solve the following problem:

min‖y− y0‖2

s.t. yT Hy = 0. (18)

We solve this nonlinear problem by Lagrange multipliers.
The Lagrangian of the system is:

Λ(y,λ) = yT y+2yT
0 y+λyT H y. (19)

The stationary points of the Lagrangian are:

2y+2y0 +2λH y = 0 ↔ y = (I +λH)−1 y0 (20)

Since H is symmetric, its singular value decomposition is
H =UΣUT . We then have that I +λH =U (I +λΣ)UT , and

consequently:

y =U (I +λΣ)−1 UT y0 (21)

We next plug Eq. (21) into our condition yT H y = 0 to obtain
the following:

yT
0 U (I +λΣ)−1 UT H U (I +λΣ)−1 UT y0 = 0 ⇔

yT
0 U (I +λΣ)−1

Σ(I +λΣ)−1 UT y0 = 0 ⇔ (22)

zT Dz = 0,

where z = UT y0. Since (I +λΣ)−1 is diagonal, we have a
simple expression for D:

D = diag
(

σm

(1+λσm)2

)
, (23)

where σm are the diagonal elements of Σ. As a result, we
need to solve:

∑
m

z2
m

σm

(1+λσm)2 = 0. (24)

This is a rational equation in λ. We solve it by computing the
polynomial numerator and extracting its roots.
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