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Common goal is to obtain or maintain

high-quality surfaces

-

Low-quality surface High-quality surface

Original image: [Grinspun, Gingold, Reisman, and Zorin, 2006]



We’'d like to be able to fill holes in
existing surfaces, ...

-

Also care about quality of boundary between new surface
and old surface



... connect existing surfaces, ...

L 4

Important that boundaries of different surfaces blend smoothly



... connect existing curves, ...

High-precision controls for high-quality surfaces



... and edit existing surfaces

Fine-tuned edits that preserve details
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There are many ways to describe high

quality surfaces

NURBS

Implicit Surfaces

Original images: Wikipedia and [Bourke, 1997]



Solving a PDE turns surface modeling
into boundary value problem

PDE captures quality
we would like, e.g.:

Au =0

PDE surface in continuous domain



Solving a PDE turns surface modeling
into boundary value problem

PDE captures quality
we would like, e.g.:

Au =0

Find surface that
satisfies PDE and

boundary conditions

PDE surface in continuous domain



Minimizing an energy or solving a PDE

can produce high quality surfaces

Discretized domain
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u, is the (x,y,z) position of vertexi in

discretization mesh
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Minimizing an energy or solving a PDE

can produce high quality surfaces

Discretized domain

Define exterior <
and interior (ug)
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u. is the (x,y,z) position of vertexiin
discretization mesh




Minimizing an energy or solving a PDE
can produce high quality surfaces

Discretized domain

Define exterior
and interior (ug)
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u. is the (x,y,z) position of vertexiin

Solve for ug discretization mesh
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Designing a technique to discretize

high order PDEs requires care

Guarantees about surface quality:
interior and boundary

Expose control along boundary

Positional control of exterior

Operate directly on input shape:
simple triangle meshes,

independent of discretization
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Derivative control at boundary




Must support different boundary types

Points

Curves

Regions

oge
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We present a technique for

discretizing high order PDEs

Doesn’t require high-order elements
Support points, curves and regions as boundaries
Exposes tangent and curvature control

Solution in single, sparse linear solve
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We present a technique for

discretizing high order PDEs

Doesn’t require high-order elements

Support points, curves and regions as boundaries
Exposes derivative and curvature control
Solution in single, sparse linear solve

Real-time modeling and deformation

Convergence for high order PDEs
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Biharmonic and Triharmonic equations

serve as running examples

Biharmonic equation Notation:

Au =
0 Au=V-Vu=u, +uy, +u,

AFu = A(AF~1u)
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Biharmonic and Triharmonic equations

serve as running examples

Biharmonic equation Notation:
2.0
Au=0 Au=V-Vu=u, +uy, +u,
Laplacian energy
Ep = 3(Au,Au)g, — min |A"u=A(A""u)

(f.9 Q—/fg




R R R AR ORI,
Biharmonic and Triharmonic equations

serve as running examples

Biharmonic equation Notation:
2.0
Au=0 Au=V-Vu=u, +uy, +u,
Laplacian energy
Ep = 3(Au,Au)g, — min |A"u=A(A""u)
(.90 = / g
Triharmonic equation

ASu =0
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Biharmonic and Triharmonic equations

serve as running examples

Biharmonic equation Notation:
2.0
Au=0 Au=V-Vu=u, +uy, +u,
Laplacian energy
Ep = 3(Au,Au)g, — min |A"u=A(A""u)
(.90 = / g

Triharmonic equation

A3u =0

Laplacian gradient energy

Er = 1(VAu,VAu)g, — min



Bi-/Tri- harmonic equations produce
smooth surfaces and boundaries

Au

Soap film Thin plate Curvature variation minimizing
C%at boundary Clat boundary C? at boundary

Positional control at +Tangent control at +Curvature control at
boundary boundary boundary

Original image: [Botsch and Kobbelt, 2004]



Previous works have limitations

Simple domains, analytic boundaries
[Bloor and Wilson 1990]
Model shaped minimization of curvature variation energy
[Moreton and Séquin 1992]
Interpolate curve networks, local quadratic fits and finite differences
[Welch and Witkin 1994]
Uniform-weight discrete Laplacian
[Taubin 1995]
Cotangent-weight discrete Laplacian
[Pinkall and Polthier 1993],
[Wardetzky et al. 2007],
[Reuter et al. 2009]




We can show previous solutions are
applications of mixed FEM approach

[Clarenz et al., 2004] v r r
— Willmore Flow (fourth-order @@@
PDE)
— Positions and co-normals on y@@
boundary

[Botsch and Kobbelt, 2004]
— Discretization of k-harmonic

equations i ‘

Discrete boundary conditions found in these can be derived
from continuous case

Original images: [Clarenz et al., 2004] and [Botsch and Kobbelt, 2004]
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Standard finite element method would

require high-order elements

Need many more degrees of freedom

Existing high-order representations are neither
practical, nor popular

Need low order, C° workarounds:
e.g. mixed FEM



Discrete Geometric Discretization not
easily connected to continuous case

ldea is to define mesh analog of
continuous geometric quantity

E.g. Laplace-Beltrami operator
integrated over vertex area

Used often in geometric modeling



We introduce mixed finite elements
for variational surface modeling

Introduce new variable to convert
high-order problem into two low-
order problems

Solve two problems simultaneously



We introduce mixed finite elements
for variational surface modeling

Introduce new variable to convert
high-order problem into two low-
order problems

2(Au, Au)g, — min

!

. = —_— 1
Solve two problems simultaneously 2 <V7 V>QO 114,

s.t. Au=v

1

New variable needs to be enforced
as hard constraint
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We use Lagrange multipliers to

enforce the new variable

2(Au, Au)g, — min



We use Lagrange multipliers to
enforce the new variable

%<V7 V>QO — min, s.t. Au=v



We use Lagrange multipliers to
enforce the new variable

(V,v)q, — min, s.t. Au=1v

l (Lagrange multiplier: \)

L
5(V,V)a, + (A, Au — v)o, — min

N




We use Lagrange multipliers to
enforce the new variable

(V,Vv)q, — min, s.t. Au=v

l (Lagrange multiplier: \)

v, v)a, + (\,Au — v)o, — min

2
l (Green’s Identity)
1

Lv, V), + (A Vi, + (\ P)aq, — (VA, Vu)g, — min

N




Discretize each variable using piece-
wise linear elements

U=y uo;

1€

V=) v

1€Q)

A=) N

1€

Hat function: ¢z

1 i
| /\
J k
1 at vertex i, O at all other

vertices

Linearly interpolated across
edges, faces of mesh
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Take derivatives of energy to find
minimum
%<V7 V>QO + <)‘7V>Qo + <)‘7 g_:;>890 — <v>\, vu)QO — min

With respect to v:

Z(Vj — Xj)(@j, i), =0

jel



R R R AR ORI,
Take derivatives of energy to find
minimum
%<V7 V>QO T <>‘7V>Qo -+ <)‘7 g_:;>890 N <V)\, vu)QO — min

With respect to v:

Z(Vj — Xj)(@j, i), =0

jel
With respect to u:
— "X (V5, Voi)a, =0

jel
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Take derivatives of energy to find

minimum

%<V7 V>Qo T <)‘7V>Qo <)‘7 gz>890 — <V)\, vu)QO — min

With respect to v:

D (Vi = X)) {85, di)ay

jel
With respect to u:
- Z Ni(Vo;,Vi)a, =0

jEI
With respect to A:

ZVJ ¢Ja¢z Qo ‘|'Z 811] ¢ja¢z o0y — Zu] V¢Jav¢z> —

JEl jeI jeI




Take derivatives of energy to find
minimum

%<V7 V>Qo T <>‘7V>Qo <>\7 g};}aao — <V)\, VII)QO — min

With respect to v:

Z(Vj — ) (D5, bi)

With respect to u:

With respect to A:
ZVJ ¢Ja¢z Qo"'zauj ¢ja¢z 0o — Zu] V¢Jav¢z> —

JEl jeI jeI
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Take derivatives of energy to find
minimum

%<V7 V>Qo T <>‘7V>Qo <>\7 gz>690 — <V)\, VII)QO — 1min

With respect to v:

Lagrange multiplier has disappeared

> ViV, Vi), =0
jEI
With respect to A:

ZVJ ¢Ja¢z Qo ‘|'Z 8ug ¢ja¢z 0Qy — Zu] V¢J,V¢Z> —

JEl jeI jeI




Solve simultaneously as one big
system

Move known parts to right-hand side

Rewrite in block matrix form:

M L || v - —Lu— Nn |
L 0 u 0

Discrete Laplacian Mass matrix Neumann matrix

Lij = (V¢;,Vo;) M;; = (s, ¢5)  Nij = {¢i, dj)o0
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Solve simultaneously as one big

system

Move known terms to right-hand side

Rewrite in block matrix form:




e
We can solve deformations in real-

time using pre-factored matrix

Point boundaries Curve boundaries with
derivatives

S
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Region boundaries are also derived

from continuous case

Use two rings of boundary
instead of one ring with
specified derivatives

Resulting systems are similar, different right-hand sides

Helps simplify implementation to support all three boundary
types




Triharmonic offers more boundary
control, better smoothness

Introduce two new variables to

344 —
convert high-order problem into Au=0
three low-order problems

Au=v
Solve three problems simultaneously AV — W
Aw = ()

Need even more Langrange multipliers

But in the end we get a structurally similar, linear system




R R R R R RO R R R RRRRRRRRRR=S
Triharmonic guarantees C? continuity

at boundaries
Original Biharmonic Triharmonic
AS S S
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Triharmonic guarantees C? continuity

at boundaries

Original Biharmonic Triharmonic




Convergence with refinement is also
guaranteed and mesh independent

Tes‘F solved functions Aku _ Akut
against
known analytic functions

error = ||[u — ug||

Over varying mesh
resolution and
irregularity
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Observe nearly optimal convergence

for biharmonic
min angle 30 deg min angle 1 deg

Boundary types
don’t have affect

on convergence

S1ES 1.E-5
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1.E-25 h 1E-05  1E-25 h 1.E-05




High-order PDEs are more suitable for
completing surfaces

IV

original




High-order PDEs are more suitable for
completing surfaces

region
Input constraint manlpulatmg tangent controls




High-order PDEs are more suitable for
completing surfaces

A3u

input region manipulating curvature
constraint controls




Specifying derivatives adds greater
control to shape manipulation

“\
\\
\
T \
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Specifying curvatures adds even

greater control to shape manipulation




e
Curve boundaries well suited for

draw-and-drag manipulation
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We provide a discretization technique

for high-order energies or PDEs

Reduce to low order using new constrained variables
Use same constraint structure to enforce region conditions

Convergence high-order PDEs, with discretization
independence
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We provide a discretization technique

for high-order energies or PDEs

Reduce to low order using new constrained variables
Use same constraint structure to enforce region conditions

Convergence high-order PDEs, with discretization
independence

Future Work:

Improve convergence of triharmonic solution
Effect of non-flat metric
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